
VideoBoard XE
FX Core, version 1.20

Programmer’s Manual

Copyright © 2009 by T.Piórek

Table of contents
THE XDL..2

The order of fetching data in the XDL...8
OVERLAY MODES...9

Pixel modes..9
The text mode..10

Text mode scroll...11
Transparent Overlay colours..12

Priorities of displayed data of OVERLAY vs PLAYFIELD/PMG...13
OVERLAY-PLAYFIELD/PMG collision detection. (raster detection)14
THE COLOUR ATTRIBUTE MAP...16

Attribute Map in ANTIC CCR mode..18
Attribute Map in ANTIC HIRES mode...18

RGB PALETTE MODIFICATION...20
MEMAC..21

MEMAC-A..22
MEMAC-B..23

BLITTER...24
The Blitter and constant source data..31

CORE REGISTERS..32
HISTORY..41

1

THE XDL

The XDL (eXtended Display List) is a list of commands, that controls the OVERLAY display
and the attribute map of the VBXE. The XDL is loaded to the VBXE memory through the
MEMAC buffers (see the MEMAC description). It may be loaded to any location inside the
512KB VBXE VRAM, and it is pointed to by the registers XDL_ADR0, XDL_ADR1 i
XDL_ADR2. The XDL processing starts, when the bit XDL_ENABLED in the
VIDEO_CONTROL register is set to 1. There are no limitations on the XDL’s size, and its
structure is vertical: as it is the case of the ANTIC DL, the XDL processing „starts” at the top
of the display.

The XDL is structured as follows:

XDLC (2 bytes)
additional data (0-20 bytes)
XDLC (2 bytes)
additional data (0-20 bytes)
...
...
XDLC with the XDLC_END marker (2 bytes)
additional data (0-20 bytes)

The „XDLC” stands for the XDL Control word. This word always occupies two bytes. Every
bit of the control word has different meaning (see the Table 1). A part of the bits enables or
disables display functions, and another part of them carries an information, whether the XDL
Controller should fetch additional data, and what data it would be. The bits do not depend
on each other, any combination of them can be used at any time; it is, for example, possible
to load the Overlay video memory address leaving the Overlay switched off. The XDLC
word gets processed before the line starts to be displayed.

2

byte.bit
XDLC

bit’s label meaning additional data

1.0 XDLC_TMON enable Overlay Text Mode -

1.1 XDLC_GMON enable Overlay Graphic Mode -

1.2 XDLC_OVOFF disable Overlay -

remarks: Setting more than one of the bits 0.0, 0.1 and 0.2 will cause the Overlay to be
switched off. The Overlay is disabled by default (at the top of the screen).
Leaving all of these bits zeroed will preserve the current state of the overlay. It
can be useful when you only want to change the font or scrolling values.

1.3 XDLC_MAPON enable colour attributes -

1.4 XDLC_MAPOFF disable colour attributes -

remarks: Setting more than one of the bit 0.3 and 0.4 will disable the attributes. It is also
disabled by default, i.e. at the top of the screen. Leaving all of these bits zeroed
will preserve the current state of the map. It can be useful when you only want to
change the font or scrolling values.

1.5 XDLC_RPTL no changes in next x scanlines number of scanlines
(x) (1 byte)

remarks: After the current line was displayed, there will be x consecutive scanlines to use
the same settings, and XDL will not be processed for them.
For example, if you want to display a line of text, enable the text mode with
XDLC_TMON, and set XDLC_RPTL giving 7 as x. As a result 8 scanlines will be
produced forming a line of the text mode.

1.6 XDLC_OVADR set the address and step of the
Overlay display memory

5 bytes (3 byte
address and 2 byte
step), little endian.

remarks: The address of the Overlay display memory is a 19-bit value. The step
parameter defines, how many bytes should be added to the address, so that it
would point to the data for the next line. The step may be a value from 0 to 4095.

The order of the additional data:
1. OVADR[7:0]
2. OVADR[15:8]
3. OVADR[18:16]
4. OVSTEP[7:0]
5. OVSTEP[11:8]

In a pixel mode the OVSTEP gets added to the OVADR after every scanline. In
the text mode the OVSTEP is added to the OVADR when eight lines of the
character have been displayed.

1.7 XDLC_OVSCRL Set scrolling values for the text
mode

2 bytes:
1. hscroll (1 byte)
2. vscroll (1 byte)

3

byte.bit
XDLC

bit’s label meaning additional data

remarks: hscroll is a value ranged 0 ... 7, where 0 is a not scrolled line, and 7 is a line
scrolled 7 pixels to the left.
vscroll is a value ranged 0 ... 7, where 0 is a not scrolled line, and 7 is a line
scrolled 7 pixels up.

By default, at the top of the screen, hscroll = vscroll = 0.
Scrolling values can be changed in every scanline. Setting the XDLC_OVSCRL
does not enable the scroll (which is always on), but only sets the VALUES OF
THE SCROLLING REGISTERS. These values will be used for every
consecutive scanline until the XDL changes them.
The horizontal scrolling unit is 1 pixel VBXE hires (or 0.5 pixel GR.8).

2.0
(XDLC
2nd byte)

XDLC_CHBASE set character base 1 byte = font address

remarks: The font contains 256 characters, 8x8 pixels each, and should be loaded to the
VBXE memory. Every font must start at a 2K boundary, therefore up to 256 fonts
can be loaded to the 512K VRAM. As everything else, the font is stored in the
VBXE memory through the MEMAC buffers.

2.1 XDLC_MAPADR set the address and step of the
colour attribute map

5 bytes (3 byte
address and 2 byte
step), little endian.

remarks: The colour attribute map may start at any location in the VBXE memory.

Data order:
1. AMAP[7:0]
2. AMAP[15:8]
3. AMAP[18:16]
4. MAPSTEP[7:0]
5. MAPSTEP[11:8]

The MAPSTEP value is automatically added to the AMAP address when the
attribute field has been completely displayed vertically (i.e. after displaying the
last – bottom – scanline of the field), unless the settings get explicitly changed
by the XDL.

4

byte.bit
XDLC

bit’s label meaning additional data

2.2 XDLC_MAPPAR set scrolling values, width and
height of a field in the colour
attribute map

4 bytes:
1. hscroll (1 byte)
2. vscroll (1 byte)
3. width (1 byte)
4. height (1 byte)

remarks: hscroll is a value of range <0 ... 31>, where 0 means that the line is not scrolled,
and 31 – that the line is scrolled 31 pixels to the left.
vscroll is a value of range <0 ... 31>, where 0 means that the line is not scrolled,
and 31 – that the line is scrolled 31 pixels up.
width – the width of the field in pixels, range <7 ... 31> == 8 to 32 pixels (as in
ANTIC GR.8)
height – the height of the field in scanlines <0 ... 31> == 1 to 32 lines
hscroll and vscroll for the map should never get greater than the respective
values of width and height.

Default values (at the top of the screen) are:
hscroll = vscroll = 0;
height = width = 7; (the field size 8x8)

The field size and scrolling values may be changed in any scanline. The hscroll
unit for the map is 1 pixel GR.8.

Setting XDLC_MAPPAR does not enable the map to scroll (this function is
always on), it only loads the scrolling registers. The values loaded will be used in
consecutive scanlines until they are explicitly changed with XDL.

5

byte.bit
XDLC

bit’s label meaning additional data

2.3 XDLC_ATT Setting the display size (both
Overlay and Colour map) and
Overlay priority to the ANTIC
display. And Overlay colour
modification.

2 bytes:
1. Overlay / map
width + palette
change
2. main priority

remarks: BYTE 1:

b7 b6 b5 b4 b3 b2 b1 b0

XDL PF PALETTE XDL OV PALETTE - - OV_WIDTH

OV_WIDTH: OVERLAY and ATTRIBUTES MAP width:

0 = NARROW (256 pixels, as ANTIC narrow)
1 = NORMAL (320 pixels,as ANTIC normal)
2 = WIDE (336 pixels, as ANTIC wide; in this mode the display is 8 pixels wider
at both sides, than NORMAL)

The default (at the top of the screen) width is NORMAL (320 pixels).

XDL OV PALETTE: the palette for OVERLAY active from this screen line. By
default, OVERLAY uses palette nr.1 from the top of the screen.

XDL PF PALETTE: the palette for PLAYFIELD and PMG active from this screen
line. By default it's the nr.0 palette from the top of the screen.

CAUTION: if the attribute map is turned on, the palettes for OVERLAY and
PLAYFIELD/PMG are selected by the corresponding attribute maps.

BYTE 2: Main priority.

b0 - 1 = OVERLAY over PM0, 0 = OVERLAY overlaid by PM0
b1 - 1 = OVERLAY over PM1
b2 - 1 = OVERLAY over PM2
b3 - 1 = OVERLAY over PM3
b4 - 1 = OVERLAY over PF0
b5 - 1 = OVERLAY over PF1
b6 - 1 = OVERLAY over PF2
b7 - 1 = OVERLAY over PF3

The default value (at the top of the screen) of the priority is 255.
The main priority is not taken into account, when the attribute map is enabled. In
this case it is the map, that decides, which one of the 4 predefined priorities
P0 ... P3 will be used for the particular part of the screen.

2.4 XDLC_HR enable the Hi-Res pixel mode -

6

byte.bit
XDLC

bit’s label meaning additional data

remarks: This bit is only taken into account, when XDLC_GMON == 1.
The HR mode (or hires) has a resolution of 640 pixels horizontally for the
NORMAL display width and can display 16 colours, from $00 to $0F, in the
current Overlay palette (of course, the OV_COLOR_SHIFT can be used as well).
Each pixel is represented by a nibble of data (4 bits) in the VBXE memory. Each
data byte contains 2 nibbles: the most significant nibble represents the leftmost
pixel.

2.5 XDLC_LR enable the Low Resolution mode -

This bit is only taken into account, when XDLC_GMON == 1.
The LR mode has a resolution of 160 pixels horizontally for the NORMAL display
width. The number of displayable colours is the same as in the standard display
mode (256).

2.6 - reserved (=0) -

2.7 XDLC_END XDL end (the last XDL record),
wait for VSYNC.

-

remarks: XDLC_END tells the XDL controller, than after processing of this XDLC is
finished, it has to wait for the vertical sync pulse, and then start processing the
XDL from the beginning.

7

The order of fetching data in the XDL

The additional XDL data (addresses, scrolling registers etc.) are fetched or they are not,
depending on the states of the corresponding bits in the XDLC (see the XDL description).
The order of them in the memory is always the same, data corresponding to the lower bits
of the XDLC are fetched before the data corresponding to the higher bytes of the XDLC:

- XDLC_RPTL (1 byte)
- XDLC_OVADR (5 bytes)
- XDLC_OVSCRL (2 bytes)
- XDLC_CHBASE (1 byte)
- XDLC_MAPADR (5 bytes)
- XDLC_MAPPAR (4 bytes)
- XDLC_OVATT (2 bytes)

After the XDLC word there may be maximum 20 bytes of data.

Example: an XDL that creates 16 scanlines (or 2 lines) of the text mode.

XDLC equ XDLC_TMON + XDLC_RPTL + XDLC_OVADR+XDLC_CHBASE +
XDLC_OVATT + XDLC_END

.word XDLC

.byte 15 ;how many scanlines without a change (xdlc_rptl)

.long adr ;3-byte screen memory address (xdlc_ovadr)

.word 160 ;automatic step (xdlc_ovadr)

.byte $20 ;CHBASE $20 * $800

.byte 0 ;(xdlc_ovatt) - narrow Overlay

.byte 255 ;(xdlc_ovatt) – the highest priority of the Overlay

8

OVERLAY MODES

The bit combos that enable the Overlay display modes of the VBXE:

XDLC_TMON XDLC_GMON XDLC_HR XDLC_LR mode

0 1 0 0 Pixel SR (320 / 256c)

0 1 1 0 Pixel HR (640 / 16c)

0 1 0 1 Pixel LR (160 / 256c)

0 1 1 1 Forbidden

1 0 X X 80-column text mode

1 1 X X
Forbidden, works as
XDLC_OVOFF

Pixel modes

The SR mode (Standard Resolution)

This is a pixel mode that can display 256/320/336 pixels horizontally (the width is selected
via XDL, the vertical resolution is defined by the XDL structure) in 256 colours. Every pixel is
represented by a byte in VBXE memory. If the value of this byte is 0, then the pixel is not
displayed (it is transparent, unless the no_trans bit in the VIDEO_CONTROL register is set
to 1). The other values select the colour from the current Overlay palette, and the value of
the byte is the colour number. After displaying a scanline, the VBXE automatically increases
the address of the data to fetch from the screen memory adding the step value, ranged 0 ...
4095, as defined by the XDL.

The LR mode (Low Resolution)

This is a pixel mode with horizontal resolution of 128/160/168 pixels. All other characteristics
are as in the SR mode.

The HR mode (High Resolution)

This is a pixel mode with horizontal resolution of 512/640/672 pixels (the width is selected
via XDL, the vertical resolution is defined by the XDL structure) in 16 colours.

A byte of the video memory contains information about 2 pixels, 4 bits each:

b7 b6 b5 b4 b3 b2 b1 b0

Leftmost pixel Rightmost pixel

The transparency is selected, when the nibble value is 0.

Each pixel selects the colour 0 ... 15 from the currently selected (locally or globally) Overlay
palette.

9

The text mode

This is a text mode with horizontal resolution of 64/80/84 characters (the width is selected
via XDL, the vertical resolution is defined by the XDL structure) in 128 or 16+8 colours. The
video memory structure is as follows:

char (1 byte), attribute (1 byte), char, attribute, char, attribute, and so on.

The char is a value 0-255 and defines which character of the 256-character font will be
displayed.

The attribute has the following structure:

b7 – decides, whether the character’s background is transparent or it has a colour.

when b7 = 0:

b7 b6 b5 b4 b3 b2 b1 b0

0 foreground (pixels set to 1) colour = $00 .. $7F

b0 ... b6 = colour number (0 ... 127) for the character, i.e. colours 0...127 from the
active (locally or globally) Overlay palette.

The character’s background is transparent, if the no_trans bit in the
 VIDEO_CONTROL register is cleared (0) – or it has the colour no. 128 otherwise.

if b7 = 1:

b7 b6 b5 b4 b3 b2 b1 b0

1 foreground (pixels set to 1) colour = $00 .. $7F
background colour = $80 .. $FF (foreground colour + $80)

b0 ... b6 = colour number for the character (0...127 for the foreground and 128...255
for the background), i.e. colours 0-255 from the active (locally or globally) Overlay
palette.

The background is not transparent.

In other words:

colour of enabled pixels: always 0 ... 127 (attribute value & 127)
colour of disabled pixels:

a) when VC bit 2 (no_trans) == 0
if (attribute < 128) -> transparent background
otherwise background colour = (attribute & 127) + 128 (i.e. 128 ... 255)

b) when VC bit 2 (no_trans) == 1
if (attribute < 128) -> background colour = 128
otherwise background colour = (attribute & 127) + 128 (i.e. 128 ... 255)

The full line of the text mode occupies the number of bytes in the memory equal to 2x line

10

width in characters. Additionally the line can be expanded by 1 byte because of the hscroll.

Text mode scroll

See the XDL description.

11

Transparent Overlay colours

I. When the no_trans bit in the VIDEO_CONTROL register is set to 1, then no Overlay
colour is transparent, either in the pixel modes or in the text mode (regardless of the trans15
bit state in the VIDEO_CONTROL register).

II. When the no_trans bit in the VIDEO_CONTROL register is set to 0 and the trans15 bit in
the same register is cleared (which is the default), then:

● SR / LR pixel modes: colour „0” is transparent.
● HR pixel mode: the colour selected by the nibble that has a value of „0” is

transparent
● text mode: the background is transparent, if the bit 7 of the attribute is cleared.

III. When the no_trans bit in the VIDEO_CONTROL register is cleared and the bit trans15 in
the VIDEO_CONTROL register is set, then colours are transparent as described in the
paragraph II, and additionally:

● SR / LR pixel modes: each colour with palette index $HF (where H = 0...F, i.e. $0F,
$1F, $2F and so on up to $FF) is transparent;

● HR pixel mode: colour index $F is transparent;
● text mode: each colour with palette index $HF (where H = 0...F, i.e. $0F, $1F, $2F

etc.. up to $FF) is transparent.

The trans15 bit allows to create invisible objects, which can be used, for example, as fields
to detect collisions with other Overlay objects.

12

Priorities of displayed data of OVERLAY vs PLAYFIELD/PMG.
There are several priority registers defining the order data of PLAYFIELD/PMG and
OVERLAY content are drawn:

- main priority register (set by XDL) - by default set to 255 which means that the OVERLAY
data has higher priority than any of PF/PMG colours.

- P0-P3 registers - used INSTEAD main priority register set by XDL when the Attribute Map
is enabled. Their meaning is the same as for the main priority register. The content of the
4th byte of AM cell decides which (P0, P1, P2, or P3) register is active for given cell. See the
register description for the further details.

The meaning of the bits in the main priority register (and in P0-P3 registers) is as follow:

b0 - 1 = OVERLAY over PM0, 0 = OVERLAY covered by PM0
b1 - 1 = OVERLAY over PM1, 0 = OVERLAY covered by PM1
b2 - 1 = OVERLAY over PM2, 0 = OVERLAY covered by PM2
b3 - 1 = OVERLAY over PM3, 0 = OVERLAY covered by PM3
b4 - 1 = OVERLAY over PF0, 0 = OVERLAY covered by PF0
b5 - 1 = OVERLAY over PF1, 0 = OVERLAY covered by PF1
b6 - 1 = OVERLAY over PF2, 0 = OVERLAY covered by PF2
b7 - 1 = OVERLAY over PF3, 0 = OVERLAY covered by PF3

In GTIA modes (9,11) (16 shades / 16 colours) OVERLAY is over the playfield, but can be
behind the PMG

13

OVERLAY-PLAYFIELD/PMG collision detection. (raster
detection)

It's possible to detect a collision between the displayed OVERLAY data (both text mode and
graphics mode) and any of the COLPM0,1,2,3,COLPF0,1,2,3 and attribute map field with
CATT bit set.

Collision detection is automatic, and takes place while VBXE draws the display.

The configuration of the raster collision detector 'sensitivity' is done by writing to the
COLMASK register. The following table describes the COLMASK bits and their meanings.

 COLMASK
bit

If set, the detected collision applies to OVERLAY-PLAYFIELD/
PMG collision, if the OVERLAY colour is in the following
range: (the palette number is insignificant)

0 0-31

1 32-63

2 64-95

3 96-127

4 128-159

5 160-191

6 192-223

7 224-255

Any combination of COLMASK bits is allowed.

The collision code can be read from the COLDETECT register:

 COLDETECT
bit

If set, the collision is detected between OVERLAY objects
and:

0 PM0 colour

1 PM1 colour

2 PM2 colour

3 PM3 colour

4 PF0 colour

5 PF1 colour

6 Colours PF2 or PF3

7 Attribute map field with CATT bit set

Any combination of COLDETECT bits is possible – software collision checking with
COLDETECT register should be done with the appropriate AND mask.

Invalidating the detected collision (zeroing out the COLDETECT register) is done by writing

14

any value to the COLCLR register.

CAUTION: one can only detect the collision with the 'non-transparent' OVERLAY colors.
CAUTION: display priorities do not affect the collision detection process.
CAUTION: one should not confuse the above mentioned mechanism with the OVERLAY-
OVERLAY collision detection which is done by the blitter (see blt_collision_mask)

15

THE COLOUR ATTRIBUTE MAP

The colour attribute map allows to locally (i.e. within a field of 8x1 up to 32x32 pixels of
GR.8) change the colours PF0, PF1 and PF2, override the main Overlay priority over the
ANTIC/GTIA to one of four predefined priorities, change the local colour palette for both
ANTIC and Overlay screen modes, and change the resolution of the display generated by
the ANTIC/GTIA from ANTIC hires (GR.8) to CCR (Colour Clock Resolution = GR.15) or vice
versa.

Consequently, the attribute map greatly extends the graphic capabilities of your Atari
machine even if the proper Overlay modes are not in use.

Characteristics:

• the field size (X x Y): 8x1 up to 32x32 pixels of GR.8 (or ANTIC hires).
• map address in the VBXE VRAM: no limitations.
• automatic update of the address after displaying a full line of the map: programmable

in the range 0 ... 4095 bytes.
• horizontal and vertical scrolling by 1 pixel of ANTIC hires, controlled by XDL. It is

possible to change the register values in any scanline.
• every map field is defined by a set of 4 bytes stored consecutively in the VRAM. The

bytes define as follows:

• byte 1: local colour PF0 in CCR modes, pattern fill in Antic Hi-Res mode
• byte 2: local colour PF1
• byte 3: local colour PF2
• byte 4:

• local ANTIC<>OVERLAY priority (1 of 4 predefined ones)
• local resolution change
• local colour palette for ANTIC and Overlay display modes (independently).

The choice is between 4 palettes. ANTIC and Overlay may use either the
same or different palettes in the scope of the map field.

• support for raster collision detection of the Attribute map with OVERLAY
objects (bit CATT)

•

The attribute map is completely controlled by XDL, i.e. its VRAM address, scrolling
registers, field size etc. are defined inside the XDL list.

Attribute data

Every field of the map is defined in the VBXE VRAM by four consecutive bytes:

b7 b6 b5 b4 b3 b2 b1 b0

Local substitute of the COLPF0 register (GTIA)

b7 b6 b5 b4 b3 b2 b1 b0

Local substitute of the COLPF1 register (GTIA)

b7 b6 b5 b4 b3 b2 b1 b0

16

Local substitute of the COLPF2 register (GTIA)

b7 b6 b5 b4 b3 b2 b1 b0

MAP PF palette MAP OV palette CATT RES PS

b6, b7 – local palette selection for normal Playfield and P/MG objects. When the attribute
map is active, it may be any of the four palettes. When the attribute map is disabled, it will
always be the palette 0.

b4, b5 – local palette selection for the Overlay. When the attribute map is active, it may be
any of the four palettes. When the attribute map is disabled, it will always be the palette 1.

WARNING: The Colour Palette assigned here has priority over the one selected in XDL
(XDL PF/OV PALETTE), that means, if the Attribute Map is active, then on the area covered
by pixels are coloured with palettes assigned to the Attribute Map cells versus default
palette assigned by the XDL.

b3 (CATT) - collision detection auxiliary bit. If set, then there is possible to detect collisions
with the Attribute Map cells during the scanline, regardless of the data displayed by ANTIC/
GTIA chip. See also: Raster collision detection.

b2 (RES) – local change ANTIC HIRES <-> CCR (1 = enabled). This bit „reverses” the
resolution selected by the standard ANTIC DL, changing the mode locally (within the
particular field of the map) from ANTIC hires into CCR or vice versa.

b0, b1 (PS) – selection of one of the 4 predefined priorities OVERLAY <-> ANTIC/GTIA.

PSEL1 PSEL0 register selected

0 0 Priority register P0

0 1 Priority register P1

1 0 Priority register P2

1 1 Priority register P3

NOTE: Within the active attribute map the global GTIA colour registers: COLPF0, COLPF1 i
COLPF2 and the global priority register are not used.

NOTE: The width of the attribute map may be forced to correspond to the
wide/normal/narrow ANTIC display. This is accomplished using the XDL, see XDLC_OVATT.

17

Attribute Map in ANTIC CCR mode

In ANTIC CCR mode (native, or forced with the RES bit - see below) if Attribute Map (AM) is
enabled, standard GTIA colour registers (COLPF0, COLPF1 and COLPF2) are replaced by
values from the PF0, PF1 and PF2 fields of AM cell. COLPF3 has no matching field in the
AM cell and is the same as set in standard register.

Attribute Map in ANTIC HIRES mode

In ANTIC HIRES mode (native, or forced with the RES bit) first byte of AM cell definition has
alternative meaning - each bit of this byte select the background colour in each pixel of the
cell:

bit = 0 then background colour is assigned as in PF2 field (3rd byte of the AM cell)
bit = 1 then background colour is assigned using COLPF3 (from the GTIA register

set)

It can be thought of as one bit depth "overlay". This enables HIRES mode to use 3 colours
instead of two.

For cells of width starting from 9 to 16 pixels each bit of this "overlay" sets the colour for 2
adjacent pixels, and if the cell width >16 pixels, each bit sets the colour for 4 adjacent pixels.

Second byte selects the colour for lit pixel. You need to remember, that if the XCOLOR bit in
the VIDEO_CONTROL register is cleared, then 4 higher bits of the colour value are
replaced with these from COLBGK register. In the other case pixel colour is fully
independent from the background colour, and colour registers have 8 bits each (this equals
to full 16 shades instead of 8 shades of one of standard colours).

RES bit description

RES bit decides if the data send currently by ANTIC will be treated as CCR mode or HIRES
mode.

Normally ANTIC decides (at the beginning of the scanline) how GTIA (VBXE) should
interpret following data:

- as ANTIC HIRES mode (modes 2, 3 and F from ANTIC's DL), or
- as ANTIC CCR mode (remaining text and graphics modes)

The RES bit, if set, allows to force local change (reverse) of interpretation of this data by
VBXE - part of the image can be displayed in altered resolution.

18

Conversion of CCR to artificial ANTIC HIRES mode:

Each pixel in CCR resolution has width of 2 pixels of ANTIC HIRES mode, and is
converted into two pixels according to the rules in the table below:

colour of the pixel in
CCR mode

HIRES, left pixel HIRES, right pixel

BACKGROUND HIRES background HIRES background

COLPF0 HIRES background PF1 colour (2nd byte of AM cell)

COLPF1 PF1 colour (2nd byte of AM cell) Tło HIRES

COLPF2 PF1 colour (2nd byte of AM cell) PF1 colour (2nd byte of AM cell)

COLPF3 PF1 colour (2nd byte of AM cell) PF1 colour (2nd byte of AM cell)

Where "HIRES background" is the color generated by the rules described previously in
"Attribute Map in ANTIC HIRES mode". Depending on value of 1st byte of the AM cell it can
be colour PF2 (from 3rd byte of the cell), or COLPF3.

Conversion of ANTIC HIRES mode into artificial CCR mode:

Pairs of adjacent bits are converted to pixels according to the rules in the table below:

HIRES, left pixel HIRES, right pixel kolor wynikowy

0 0 PF0 (1st byte of AM cell)

0 1 PF1 (2nd byte of AM cell)

1 0 PF2 (3rd byte of AM cell)

1 1 COLPF3

19

RGB PALETTE MODIFICATION

VBXE allows for simultaneous display of 1024 colours (out of 21bit hardware palette of
2097152 colours, the least significant bit of the component colour registers is discarded)
There are 4 sets (palettes) with 256 user-predefined colours each.

The RGB palette for each of those 1024 (4 x 256) colors is updated as follows:

• write palette number (0-3) into PSEL register,
• write palette colour number (0-255) into CSEL register
• write R component colour value into CR register
• write G component colour value into CG register
• write B component colour value into CB register

CAUTION: Write to CB (but not to CR nor CG) will automatically increase CSEL. One can
write next color value without direct CSEL modification.

CAUTION: If CSEL overflows from 255 to 0, PSEL will be unaffected. So, if you want to
modify next palette, you will have to write the proper value into PSEL. Otherwise, you will be
modificating the same palette, only starting with 0 colour index.

This behaviour allows for palette-rotation based effects with minimal CPU load. Setting up
the palette itself is also faster than in the previous core.

This change, together with the change in the palette switching, allows for easier and visually
proper implementation of the FADE type effects (smooth fading out or fading in of images)
Implementing these kind of effects only with a part of the palette allows a programmer to
display images in a more interesting way: e.g credit subtitles with a static image on the side
of the screen.

Writes to each of the CR, CB and CG registers make an instant change on the screen, in a
form of changing the colour. (if the given palette and colour are currently being displayed) –
the component colour values are not buffered.

By default, after power-on, the palette no #0 contains colours for PLAYFIELD/PMG which
are modified colors from „laoo.act” palette. Palettes 1-3 have all components zeroed out.
(all colors black)

Please remember, that after modifying no #0 palette, the programmer is responsible for
resetting it back to default values when the program exits. Also, remember that the palette
registers are read-only

20

MEMAC

The MEMAC is a part of the VBXE core responsible for allowing the system (CPU and
ANTIC) access to the 512 KB VRAM installed inside the VBXE.

An access to the VRAM made through the MEMAC costs VBXE 1 cycle of the PCLK clock
(14.18/14.31 MHz) per byte being read or written. Looking from the side of the CPU or
ANTIC, there is no difference between this access an any other access to the memory or I/O
registers. Technically the VBXE disables the standard RAM and substitutes own memory
using the EXTSEL signal. Because of the "movable" window introduced in FX v1.20 the core
is checking CASINH signal of the MMU (it has to be connected to VBXE - see the
installation guide, or history version at the end of this document) so the conflicts with OS,
BASIC or the CARTRIDGE ROM memory could be excluded.

The VBXE memory access can be accomplished through two independent „windows”:

MEMAC A - window of definable base address and size.
MEMAC B - fixed size window at $4000 - $7FFF (a 16 KB window)

WARNING: If MEMAC A window is defined so it overlaps the MEMAC B windows, then
MEMAC A has priority over the MEMAC B. There is no conflict with the priorities if MEMAC A
or B is defined as ANTIC accessible, and the other one 6502 accessible - in this case
windows can overlap partially or in whole.

WARNING: In case of window in $4000-$7FFF address space programmer should disable
extended memory writing 0xFF or 0xFE to the PORTB ($D301) if want to access the VBXE
memory - some memory extensions that utilises EXTSEL signal have priority above VBXE.
As a result, data that should go into VRAM would go into EXTRAM.

Warning: Cores with R suffix (ie "fx v1.20r"):

Special function of MEMAC is emulation of standard 320KB expansion (RAMBO - 256kB of
extended ram with no separate access for ANTIC and CPU). The extension memory is
mapped from upper half of VBXE memory. One have to remember that this memory is
shared with VRAM, and can be altered by VBXE oriented application!

FX cores with A suffix (ie "fx v1.20a") have no extended memory expansion emulation, and
should be used if standard memory expansion unit is already installed in the computer.

21

MEMAC-A

MEMAC-A window can be placed in arbitrary base address of 6502 with granitulaty of
0x1000 bytes, so it can be places on 0xY000 address where Y=0..F. Size of this window is
configurable from one of following sizes:
$1000 (4kB)
$2000 (8kB)
$4000 (16kB)
$8000 (32kB)

WARNING: window set at starting address $F000 (for example) and of size exceeding
$1000 will be truncated to $1000 regardless of it size - there will be no address wrap back to
$0000 address.

WARNING: if in the selected address space ROM memory or the hardware registers exists
part of VRAM will be not accessible, because ROM and hardware registers have priority
above VRAM.

MEMAC A window can be:
- off (standard RAM will be there)
- on for CPU (CPU "sees" VRAM, ANTIC "sees" Atari RAM)
- on for ANTIC
- on for both ANTIC and the CPU

ANTIC and the CPU sees the same fragment of VRAM (they have the same bank register -
MEMS)

MEMAC-A is controlled by 2 registers (see also description near the end of this document):

MEMMAC_CONTROL (MEMC) - this register selects base address and window size. After
the RESET 0 is written to the MCE and MAE bits so the window is disabled, remaining bits
are left untouched.

MEMAC_BANK_SEL (MEMS) - this register decides of which part of the VRAM is available
through the window. Additionally there is MGE bit which globally enables the window. This
bit is also reset when the RESET button is pressed.

For further details on these registers please refer to REGISTER DESCRIPTION.

22

MEMAC-B

MEMAC-B window is located at 0x4000 address and its size is fixed to 0x4000 (16kB).

MEMAC-B window can be:
- off (standard RAM will be there)
- on for CPU (CPU "sees" VRAM, ANTIC "sees" Atari RAM)
- on for ANTIC
- on for both ANTIC and the CPU

MEMAC-B window configuration and bank selection is done through MEMAC_B_CONTROL
register (MEMB). This is write only register, and was left as a legacy from the previous
version of the core.

23

BLITTER

The Blitter built into the VBXE core allows to copy and fill VRAM areas of any size.

The Blitter is controlled by the BlitterList – a sequence of data loaded into the VRAM by the
Atari CPU. The general structure of the BlitterList looks as follows:

BCB
BCB
BCB
...
BCB with NEXT-marker cleared

The BCB stands for „Blitter Command Block”. The BlitterList consists of one or more BCBs.
The BCB is a set of information for the Blitter. Each BCB defines one blitter operation. The
BCB is 21 bytes long.

Byte Name Description

1 source_adr0 bits 0 ... 7, source address

2 source_adr1 bits 8 ... 15, source address

3 source_adr2 bits 16 ... 18, source address

4 source_step_y_0 bits 0 ... 7, source step y (signed)

5 source_step_y_1 bits 8 ... 11, source step y (signed)

6 source_step_x bits 0 ... 7, source step (signed)

7 dest_adr0 bits 0 ... 7, destination address

8 dest_adr1 bits 8 ... 15, destination address

9 dest_adr2 bits 16 ... 18, destination address

10 dest_step_y_0 bits 0 ... 7, destination step y (signed)

11 dest_step_y_1 bits 8 ... 11, destination step y (signed)

12 dest_step_x bits 0 ... 7, destination step x (signed)

13 blt_width0 bits 0 ... 7, object width (in bytes)

14 blt_width1 bit 8, object width (in bytes)

15 blt_height bits 0 ... 7, object height (in lines)

16 blt_and_mask AND-mask for source data

17 blt_xor_mask XOR-mask for source data

18 blt_collision_mask AND-mask for collision detection

19 blt_zoom X- and Y- axis zoom of the object being copied

20 pattern_feature pattern fill

21 blt_control additional information (see below)

24

source_adr

The source data for the Blitter operation may be located at any address inside the VBXE
memory.

source_step_y

This parameter defines, how many bytes to add to, or subtract from the source_adr after the
horizontal line of the blt_width width has been copied.

source step y = -4096...4095

source_step_x

source step x = -128 ... 127

dest_adr

The destination data for the Blitter operation may be located at any address inside the
VBXE memory.

dest_step_y

This parameter defines, how many bytes to add to, or subtract from the dest_adr after the
horizontal line of the blt_width width has been copied.

dest step = -4096...4095

dest_step_x

dest step x = -128...127

blt_width

The width of the object being copied (measured in BYTES), less 1.

blt_width = 0...511. This corresponds to the width of 1...512 bytes, and in the Overlay modes
SR and LR this means 1 ... 512 pixels. In the HR mode this is 2 ... 1024 pixels.

blt_height

The height of the object being copied (measured in lines), less 1.

blt_height = 0 ... 255, i.e. 1 ... 256 lines

blt_and_mask

Clearing bits in the source data:

source' = source AND blt_and_mask

Every byte of the source data undergoes this operation. The „source” in the equation above
means the source data byte having been fetched by the Blitter.

25

blt_xor_mask

Reverting bits in the source data:

source'' = source' XOR blt_xor_mask

Every byte of the source data undergoes this operation.

blt_collision_mask

Collision detection mask. Collision detection is available in blitter modes 1,2,3,4,5 and 6
(see blt_control)

Blitter modes 1,2,3,4 and 5:

Each collision mask bit corresponds to one segment of the palette. Each segment of the
palette has 32 colors (0-31, 32-63,64-95 and so forth) Thus, by using palette in a proper
way, we can allow for collision detection in different groups of objects on the screen.

Collision is detected if the following condition is true:
(source'' != 0 && collision_sr()), where :

source'' – source data (0-255) after AND and XOR operations

char collision_sr(void)
{
 return (((blt_collision_mask & 1) && dest >=1 && dest <= 31) ||
 ((blt_collision_mask & 2) && dest >=32 && dest <= 63) ||
 ((blt_collision_mask & 4) && dest >=64 && dest <= 95) ||
 ((blt_collision_mask & 8) && dest >=96 && dest <= 127) ||
 ((blt_collision_mask & 16) && dest >=128 && dest <= 159) ||
 ((blt_collision_mask & 32) && dest >=160 && dest <= 191) ||
 ((blt_collision_mask & 64) && dest >=192 && dest <= 223) ||
 ((blt_collision_mask & 128) && dest >=224 && dest <= 255)) ? 1 : 0;
}

"dest" is the retrieved target data (before blitter writes).

Example: giving colors 0-31 (bit 0) to background image, and colors 32-63 and 96-127
(bits 1 and 3) to static screen elements, allows for easy check for the collision of a given
object with a static screen element or the lack of the collision thereof, thus freeing the cpu
from the collision check. Using this technique we can easily avoid using ANTIC, and
generate the whole screen layout with VBXE, freeing the bus for the CPU (no DMA cycles,
the only bus activity are the REFRESH cycles)

Blitter mode 6 (VBXE in HR mode) :

Palette is only 16 colors long, so each mask bit controls 2 consecutive colors. Both nibbles
are treated separately.

Collision is detected if the following condition is met:
(source'' != 0 && collision_hr()), where:

26

source'' – source data with value of 0 to 15 (more significant nibble or less significant nibble
– treated separately) after AND and XOR operations .

char collision_hr(void)
{
 return (((blt_collision_mask & 1) && dest ==1) ||
 ((blt_collision_mask & 2) && dest >=2 && dest <= 3) ||
 ((blt_collision_mask & 4) && dest >=4 && dest <= 5) ||
 ((blt_collision_mask & 8) && dest >=6 && dest <= 7) ||
 ((blt_collision_mask & 16) && dest >=8 && dest <= 9) ||
 ((blt_collision_mask & 32) && dest >=10 && dest <= 11) ||
 ((blt_collision_mask & 64) && dest >=12 && dest <= 13) ||
 ((blt_collision_mask & 128) && dest >=14 && dest <= 15)) ? 1 : 0;
}

"dest" – retrieved target data (before blitter writes). More significant nibble or less significant
nibble (treated separately)

CAUTION: any combination of blt_collision_mask is allowed.
blt_zoom

It is possible to resize the object horizontally and vertically. This is accomplished by
multiplying its width and height by a constant 1 ... 8.

b7 b6 b5 b4 b3 b2 b1 b0

- BLT_ZOOMY - BLT_ZOOMX

The source data remains unchanged (blt_width and blt_height refer to the source object
size in bytes), it is the destination area that gets enlarged. The enlargement is equal to:

 ZOOMX(Y) = BLT_ZOOMX(Y) + 1

pattern_feature

b7 b6 b5 b4 b3 b2 b1 b0

IN_USE - PATTERN_WIDTH

The pattern_feature allows to „replicate” the the source data within a horizontal line. If the
IN_USE bit is cleared, then this function is switched off and the source data is never
replicated.

If the IN_USE bit is 1, then, when PATTERN_WIDTH+1 (1 ... 64) bytes have been copied,
the source address value is restored to its initial state for the line, and, next to this, the
PATTERN_WIDTH+1 bytes will be copied again, and the source address will be restored
again etc. until blt_width+1 bytes are copied. The pattern copying will get aborted, if
(blt_width+1)%(PATTERN_WIDTH+1) != 0, or in other words, blt_width has a higher priority.

blt_control

The byte controlling the operation and general behaviour of the blitter:

27

b7 b6 b5 b4 b3 b2 b1 b0

- - - - NEXT MODE

MODE Description

0 The so called "COPY MODE". Every byte of the source data is copied to the
destination, without any regard to transparency (values of 0) and without
collision detection.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
dest' = source'';
WriteDest(dest');

1 The main blitter mode. The source” data is copied to the destination area, IF
(source” != 0). If the blt_collision_mask is non-zero, then before the copying
the blitter will fetch the destination byte and if this byte is not a zero, then
collision will occur, and the dest code will be written to the
BLT_COLLISION_CODE register. The collision detection slows down the
blitter. If the collision detection is not desired, it is better to set the
blt_collision_mask to 0, this disables the collision detection and the blitter will
work faster.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0)
{
 dest = ReadDest();
 if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
 dest' = source'';
 WriteDest(dest');
}

 2 The written out data dest’ is an arithmetical sum of source” and the dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0)
{
 dest = ReadDest();
 if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
 dest' = dest + source'';
 WriteDest(dest');
}

28

MODE Description

3 The written out data dest’ is a result of a bitwise OR of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0)
{
 dest = ReadDest();
 if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
 dest' = dest | source'';
 WriteDest(dest');
}

4 The written out data dest’ is a result of a bitwise AND of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
dest = ReadDest();
if (source'' != 0 && (dest & blt_collision_mask))
{
 BLT_COLLISION_CODE = dest;
}
dest' = dest & source'';
WriteDest(dest');

5 The written out data dest’ is a result of a bitwise XOR of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0)
{
 dest = ReadDest();
 if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
 dest' = dest ^ source'';
 WriteDest(dest');
}

29

MODE Description

6 HR Overlay support. It is basically the mode 1, except that transparency
analysis and collision detection is done by nibbles rather than by bytes.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0)
{
 dest = ReadDest();

 if (source''[3:0] != 0)
 {
 if (dest[3:0] & blt_collision_mask[3:0]) BLT_COLLISION_CODE[3:0] = dest[3:0];
 dest'[3:0] = source''[3:0];
 }
 else dest'[3:0] = dest[3:0];

 if (source''[7:4] != 0)
 {
 if (dest[7:4] & blt_collision_mask[3:0]) BLT_COLLISION_CODE[7:4] = dest[7:4];
 dest'[7:4] = source''[7:4];
 }
 else dest'[7:4] = dest[7:4];

 WriteDest(dest');
}

7 unused, reserved.

NEXT – if this bit is cleared (0), then te current BCB is the last BCB in the BlitterList, and
after its execution the Blitter will end processing, clear the BUSY flag in the BLITTER_BUSY
register, and triggering an IRQ, if it was allowed in the IRQ_CONTROL register. If the NEXT
bit is set (1), then after finishing with the current BCB, the Blitter will behave as follows:

- clear the BUSY flag in the BLITTER_BUSY register
- at the same time it will set the BCB_LOAD flag in the same register
- fetch the next BCB
- set the BUSY flag in the BLITTER_BUSY register
- perform the next BCB
- after that, clear the BUSY flag
- check the NEXT bit
- etc. (the end or a next BCB)

30

The Blitter and constant source data

If the result of the following equation:

(blt_and_mask==0)

is true, then the source data is CONSTANT – it is independent from the source area and its
value is equal to blt_xor_mask. The Blitter will skip the phase of fetching the source data,
and the entire operation will be performed quicker. Filling VRAM with a constant value is
twice as fast as copying.

31

CORE REGISTERS

Address Write Read

Dx40 VIDEO_CONTROL CORE_VERSION (= $10)

Dx41 XDL_ADR0 bity 0 ... 7 MINOR_REVISION (= $20)

Dx42 XDL_ADR1 bity 8 ... 15 255

Dx43 XDL_ADR2 bity 16 ... 18 255

Dx44 CSEL 255

Dx45 PSEL 255

Dx46 CR 255

Dx47 CG 255

Dx48 CB 255

Dx49 COLMASK 255

Dx4A COLCLR COLDETECT

Dx4B - 255

Dx4C - 255

Dx4D - 255

Dx4E - 255

Dx4F - 255

Dx50 BL_ADR0 bits 0 ... 7 BLT_COLLISION_CODE

Dx51 BL_ADR1 bits 8 ... 15 255

Dx52 BL_ADR2 bits 16 ... 18 255

Dx53 BLITTER_START BLITTER_BUSY

Dx54 IRQ_CONTROL IRQ_STATUS

Dx55 P0 255

Dx56 P1 255

Dx57 P2 255

Dx58 P3 255

Dx59 - 255

Dx5A - 255

Dx5B - 255

Dx5C - 255

Dx5D MEMAC_B_CONTROL 255

Dx5E MEMAC_CONTROL MEMAC_CONTROL

Dx5F MEMAC_BANK_SEL MEMAC_BANK_SEL

x = 6 or 7, depending on where the VBXE is decoded in the Atari memory.

32

VIDEO_CONTROL

b7 b6 b5 b4 b3 b2 b1 b0

- - - - trans15 no_trans xcolor xdl_enabled

- - - - w-0 w-0 w-0 w-0

Symbols:

- first line: bit number b0 - b7
- second line: bit function ('-' = unused)
- third line:

'w' – write only
'r' – read only
'rw' – read/write
"-0" "0" after RESET
"-1" "1" after RESET
"-x" undefined after RESET

xcolor:

1 = display the PM0, PM1, PM2, PM3, PF0, PF1, PF2, PF3, BKGND colours taking the bit 0
into account (this makes 16 instead of 8 shades), and in the ANTIC hires (GR.0 and GR.8)
display independent colours for the foreground and for the background.

0 = full GTIA compatibility: 8 shades in colour registers (128 colours) and the foreground
colour dependent on the background colour in hires modes.

NOTE: the xcolor bit operates so either for global GTIA registers and for colours modified
locally by the colour map fields.

xdl_enable:

1 = enable the XDL processing after the nearest VBL pulse.

0 = disable the XDL processing after the nearest VBL pulse.

no_trans:

0 = in the Overlay modes the colour index 0 will be treated as transparent and the
ANTIC/GTIA display will be visible in its place.

1 = the Overlay has no transparent colours.

This bit allows to use all 256 palette indices as colours without problems.

NOTE: the no_trans bit has no influence on the Blitter, which in most of its modes will
consider colour index 0 as transparent.

trans15:

This bit is only taken into account, when no_trans = 0. This allows to define additional
transparent colours: see "Transparent Overlay colours".

33

XDL_ADR0

b7 b6 b5 b4 b3 b2 b1 b0

xdl_adr[7] xdl_adr[6] xdl_adr[5] xdl_adr[4] xdl_adr[3] xdl_adr[2] xdl_adr[1] xdl_adr[0]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 0 ... 7 of the XDL address in the VBXE VRAM.

The XDL address should be set before enabling the XDL processing (xdl_enable in the
VIDEO_CONTROL register).

XDL_ADR1

b7 b6 b5 b4 b3 b2 b1 b0

xdl_adr[15] xdl_adr[14] xdl_adr[13] xdl_adr[12] xdl_adr[11] xdl_adr[10] xdl_adr[9] xdl_adr[8]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 8 ... 15 of the XDL address in the VBXE VRAM.

XDL_ADR2

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - xdl_adr[18] xdl_adr[17] xdl_adr[16]

- - - - - w-x w-x w-x

bits 16 ... 18 of the XDL address in the VBXE VRAM.

34

CSEL (Color SELect)

b7 b6 b5 b4 b3 b2 b1 b0

Starting color number for RGB components modification

w-x w-x w-x w-x w-x w-x w-x w-x

Before modifying RGB color components, one needs to write the color number (the one to
modify, or the one from which to start modification) to CSEL register.
CAUTION: CSEL is automatically incremented after CB write.

PSEL (Palette SELect)

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - Palette number to
modify

- - - - - - w-x w-x

Before modifying RGB color components, one need to write the palette number to PSEL
register. PSEL, unlike CSEL, never increments automatically.

CR (Component Red)

b7 b6 b5 b4 b3 b2 b1 b0

7-bit R (red) component -

w-x w-x w-x w-x w-x w-x w-x -

R component value change is done instantly after CR write.

CG (Component Green)

b7 b6 b5 b4 b3 b2 b1 b0

7-bit G (green) component -

w-x w-x w-x w-x w-x w-x w-x -

G component value change is done instantly after CG write.

CB (Component Blue)

b7 b6 b5 b4 b3 b2 b1 b0

7-bit B(blue) component -

w-x w-x w-x w-x w-x w-x w-x -

B component value change is done instantly after CB write.
Moreover, CB write forces CSEL to increment. (if CSEL = 255, CSEL overflows to 0) PSEL is
unaffected.

35

MEMAC_CONTROL (MEMC)

b7 b6 b5 b4 b3 b2 b1 b0

Base address of MEMAC MCE MAE window size

rw-x rw-x rw-x rw-x rw-0 rw-0 rw-x rw-x

Base address of MEMAC window:

Ie. when 4 is written here, base address will be set to 0x4000, writing 7 here will result in
setting base address to 0x7000 etc.

MCE - MEMAC CPU ENABLE - when set, MEMAC A window will be accessible by 6502.
This bit is reset when RESET button is pressed.

MAE - MEMAC ANTIC ENABLE - when set, MEMAC A window will be accessible by ANTIC.
This bit is also reset on RESET.

WARNING: window will stay disabled if the MGE bit (MEMAC GLOBAL ENABLE) in
MEMAC_BANK_SEL register is reset.

Window size:

b1 b0 window size

0 0 4K

0 1 8K

1 0 16K

1 1 32K

MEMAC_BANK_SEL (MEMS)

b7 b6 b5 b4 b3 b2 b1 b0

MGE bank number 0 ... 127 for 4K window

MGE bank number 0 ... 63 for 8K window -

MGE bank number 0 ... 31 for 16K window - -

MGE bank number 0 ... 15 for 32K window - - -

rw-0 rw-x rw-x rw-x rw-x rw-x rw-x rw-x

Bits b0 - b6: Selects VRAM bank number that will be mapped into Atari address space.

Bit b7 - MGE : MEMAC GLOBAL ENABLE - when set enables MAMAC A window as
previously defined in MEMAC_CONTROL register. This global enable bit allows to use
MEMAC_CONTROL register as configuration only, so the programmer can set it once at the
beggining of the code, and use only MEMAC_BANK_SEL register during the run.

WARNING: Application should restore values of MEMAC window configuration and current
bank state at exit.

36

MEMAC_B_CONTROL (MEMB)

b7 b6 b5 b4 b3 b2 b1 b0

MBCE MBAE - VRAM bank number (0 ... 31)

w-0 w-0 - w-x w-x w-x w-x w-x

MBCE - MEMAC-B CPU ENABLE - when set 6502 can access VRAM.

MBAE - MEMAC-B ANTIC ENABLE - when set ANTIC can access VRAM.

Bank number - 32 banks, 16kB each gives access to whole 512k of VRAM.

37

BL_ADR0

b7 b6 b5 b4 b3 b2 b1 b0

blt_adr[7] blt_adr[6] blt_adr[5] blt_adr[4] blt_adr[3] blt_adr[2] blt_adr[1] blt_adr[0]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 0 ... 7 of the BlitterList address in the VBXE VRAM.

The BlitterList address in the VRAM consists of 19 bits. The BlitterList can be located
anywhere in the VRAM and start at any byte. There are no limits to the length of the
BlitterList. When the address of the BlitterList has been written to the BL_ADR, the Blitter
may be started. After it has finished, the contents of the BL_ADR remains unchanged.

The BL_ADR has to be loaded before starting the Blitter.

BL_ADR1

b7 b6 b5 b4 b3 b2 b1 b0

blt_adr[15] blt_adr[14] blt_adr[13] blt_adr[12] blt_adr[11] blt_adr[10] blt_adr[9] blt_adr[8]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 8 ... 15 of the BlitterList address in the VBXE VRAM.

BL_ADR2

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - blt_adr[18] blt_adr[17] blt_adr[16]

- - - - - w-x w-x w-x

bits 16 ... 19 of the BlitterList address in the VBXE VRAM.

BLITTER_START

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - - 1=START
0=STOP

- - - - - - - w-0

Setting b0 bit to 1 causes the Blitter to start. It will read the BlitterList, then it will perform
according to the instructions found in the BlitterList.

While the Blitter is working, it is possible to write 0 to the b0 bit. It will cause the Blitter to be
stopped immediately. This mechanism allows to abort the Blitter, if it is looping infinitely (this
can happen, when the Blitter has been started, and the VRAM is filled with a value of $FF –
the BlitterList will then always contain the NEXT-marker). This function should not be used
normally.

IRQ_CONTROL

38

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - - IRQE

- - - - - - - w-0

Enable the IRQ triggered after the Blitter has finished its work (i.e. after the transition from
the BUSY state to IDLE state).
IRQE = 0 – Blitter IRQ disabled.
IRQE = 1 – Blitter IRQ allowed.

Writing any value of IRQE acknowledges and disables the Blitter IRQ, when it has been
triggered.

CORE_VERSION

Core type. $10 = FX Core.

MINOR_REVISION

FX core revision, 0x20 = FX v1.20.

BLT_COLLISION_CODE

The code of the collision detected, when the Blitter was running. A collision was detected,
when the BLT_COLLISION_CODE != 0. The code corresponds to the non-zero value of the
pixel overwritten by the Blitter.

BLITTER_BUSY

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 BUSY BCB_LOAD

- - - - - - r-0 r-0

This register contains a non-zero value, while the Blitter is running, i.e. is processing the
BlitterList (BCB_LOAD = 1) or it performs the actual operation (BUSY = 1). In IDLE state this
register contains a value of 0 and the Blitter may be prepared for another task.

IRQ_STATUS

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 IRQF

- - - - - - - r-0

IRQF = 0 – no IRQ has been requested by the VBXE.
IRQF = 1 – the Blitter-Done IRQ has been requested. Acknowledge by a write to
IRQ_CONTROL.

39

COLMASK

The AND mask that allows to detect collisions between the Overlay and the Playfield / P/MG
of the ANTIC/GTIA. See the Detetection of raster collisions section.

COLCLR

Writing any value here will clear the COLDETECT register.

COLDETECT

The latch register of detected collisions. As the display is being generated, the collisions are
detected in the process. A bit set to 1 means that a collision has been detected.
See the Detetection of raster collisions section.

P0, P1, P2, P3

OVERLAY - PLAYFIELD/PMG Priority select registers used when Attribute Map is enabled
(on the area covered by the AM). See chapter "Priorities of displayed data of OVERLAY vs
PLAYFIELD/PMG".

40

HISTORY

Version 1.20

• new MEMAC-A and MEMAC-B memory windows.

• WARNING: since now CASINH is required to be connected to pin 9 (AUX4) of J3
connector on VBXE v1.x. For VBXE v2.0 CASINH signal should be connected to
J3 connector pin 4. CASINH is available on pin #16 of MMU, or pin #4 of
FREDDIE chip.

• Changes from 1.09 core were translated by Candle'O'Sin (Sebastian Bartkowicz)

Version 1.10

• Attribute Map: fixed RES bit functionality
• Attribute Map: added 1 bit overlay to the Attribute Map cell
• Blitter: fixed zoom behaviour, extended BCB to 21 bytes.

Version 1.09

• removal of OV_COLOR_SHIFT
• XDL can now change palettes for OVERLAY and PLAYFIELD/PMG (the same bits

are used that were previously used for OV_COLOR_SHIFT)
• new blitter collision detection model - see "blt_collision_mask"
• new raster collision detection model
• OVERLAY/attribute map field collision detection (see raster collision detection and

attribute map – CATT bit)
• MSEL/RGB mechanism removed. - new color modification registers available

(CSEL,PSEL,CR,CG,CB)
• MSEL/PRIOMAP mechanism removed - P0, P1, P2 and P3 registers have now

dedicated IO addresses.
• XDLC_OVATT bit renamed to XDLC_ATT
• Changes from 1.07 core were translated by Mikey (Michał Szwaczko)

Wersja 1.08

• security update (highly recommended) in the MEMAC A/B area handler. Now, VBXE
will honour the fact that the external expansion can force this area available for
memory access (via EXTSEL signal, like the CAS INHIBIT signal from the computer)
VBXE will not map its own memory in this area. One needs to remember to write $FF
to $D301 before any MEMAC B usage. (or any other value that will shutdown a
possible external or internal RAM expansion) Otherwise, the RAM expansion could
get higher priority than the MEMAC accessible VRAM, via EXTSEL assertion.

• Writing of any value into any of the $D080 - $D0FF addresses (GTIA registers copy)
will result in a software VBXE reset (identical with RESET keypress) resulting in
termination of XDL processing (OVERLAY and attribute map become unavailable)
and some bits of the control registers will be reset to the default values. CAUTION:
no RESET is able to restore the default VBXE palette if it has been already modified

41

by a program. Restoring of the palette is possible only by re-loading the core. This
function allows for restoring of the original screen after cold/warm start of the system,
by OS ROM jump, not by RESET keypress.

• New register MINOR_REVISION (read only) for easy identification of the loaded
core.

Version 1.0 beta 7
• First English version of the programmer's manual. Translated by Drac030 (Konrad M.

Kokoszkiewicz).

42

	THE XDL
	The order of fetching data in the XDL

	OVERLAY MODES
	Pixel modes
	The text mode
	Text mode scroll

	Transparent Overlay colours

	Priorities of displayed data of OVERLAY vs PLAYFIELD/PMG.
	OVERLAY-PLAYFIELD/PMG collision detection. (raster detection)
	THE COLOUR ATTRIBUTE MAP
	Attribute Map in ANTIC CCR mode
	Attribute Map in ANTIC HIRES mode

	RGB PALETTE MODIFICATION
	MEMAC
	MEMAC-A
	MEMAC-B

	BLITTER
	The Blitter and constant source data

	CORE REGISTERS
	HISTORY

